ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть O – центр описанной окружности остроугольного треугольника ABC, точка M – середина стороны AC. Прямая BO пересекает высоты AA1 и CC1 в точках Ha и Hc соответственно. Описанные окружности треугольников BHaA и BHcC вторично пересекаются в точке K. Докажите, что K лежит на прямой BM. Через данную точку проведите прямую, пересекающую две данные прямые под равными углами. Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок) Пусть
A, B, C, D - последовательные вершины квадрата, а
точка O расположена внутри квадрата. Известно, что
OC = OD =
В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший. Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N. |
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 831]
Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?
Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Через данную точку проведите прямую, пересекающую две данные прямые под равными углами.
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N.
Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке