ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Даны две окружности. Общая внешняя касательная касается их в точках A и B . Точки X , Y на окружностях таковы, что существует окружность, касающаяся данных в этих точках, причем одинаковым образом (внешним или внутренним). Найдите геометрическое место точек пересечения прямых AX и BY .

Вниз   Решение


Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.

ВверхВниз   Решение


Клетчатая прямоугольная сетка m×n связана из верёвочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную верёвочку. Если не останется ни одного замкнутого верёвочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?

ВверхВниз   Решение


В треугольнике ABC сторона AB равна 2, а углы A и B равны соответственно 60° и 70°. На стороне AC взята точка D, причём  AD = 1.
Найдите углы треугольника BDC.

ВверхВниз   Решение


В стране 15 городов, некоторые из них соединены авиалиниями, принадлежащими трём авиакомпаниям. Известно, что даже если любая из авиакомпаний прекратит полеты, можно будет добраться из каждого города в любой другой (возможно, с пересадками), пользуясь рейсами оставшихся двух компаний. Какое наименьшее количество авиалиний может быть в стране?

ВверхВниз   Решение


В сферу радиуса 1 вписан параллелепипед, объём которого равен  .  Найдите площадь полной поверхности параллелепипеда.

ВверхВниз   Решение


Докажите, что треугольник остроугольный тогда и только тогда, когда p > 2R + r.

ВверхВниз   Решение


Найдите сумму внутренних углов:
  а) четырёхугольника;
  б) выпуклого пятиугольника;
  в) выпуклого n-угольника.

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 240]      



Задача 117002

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 5,6,7

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Прислать комментарий     Решение

Задача 52611

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9

Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.

Прислать комментарий     Решение

Задача 53454

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Угол при вершине B равнобедренного треугольника ABC равен 108°. Перпендикуляр к биссектрисе AD этого треугольника, проходящий через точку D, пересекает сторону AC в точке E. Докажите, что  DE = BD.

Прислать комментарий     Решение

Задача 53469

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Найдите сумму внутренних углов:
  а) четырёхугольника;
  б) выпуклого пятиугольника;
  в) выпуклого n-угольника.

Прислать комментарий     Решение

Задача 53560

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC сторона AB равна 2, а углы A и B равны соответственно 60° и 70°. На стороне AC взята точка D, причём  AD = 1.
Найдите углы треугольника BDC.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 240]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .