ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105]      



Задача 53722

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Диагонали вписанного четырёхугольника взаимно перпендикулярны. Докажите, что расстояние от точки пересечения диагоналей до центра описанной окружности равно расстоянию между серединами диагоналей.

Прислать комментарий     Решение


Задача 52342

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Точка P удалена на расстояние, равное 7, от центра окружности, радиус которой равен 11. Через точку P проведена хорда, равная 18. Найдите отрезки, на которые делится хорда точкой P?

Прислать комментарий     Решение


Задача 52440

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Сторона AB правильного шестиугольника ABCDEF равна   и является хордой некоторой окружности, причём остальные стороны шестиугольника лежат вне этой окружности. Длина касательной CM, проведённой к той же окружности из вершины C, равна 3. Найдите диаметр окружности.

Прислать комментарий     Решение

Задача 52892

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

Окружность с центром в вершине прямого угла прямоугольного треугольника радиуса, равного меньшему катету, делит гипотенузу на отрезки в 98 и 527 (начиная от меньшего катета). Найдите катеты.

Прислать комментарий     Решение


Задача 53110

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Диаметр, основные свойства ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
В каком отношении она делит большее основание трапеции?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .