ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Равнобедренные треугольники ABC  (AB = BC)  и A1B1C1  (A1B1 = B1C1)  равны. Вершины A1, B1 и C1 расположены соответственно на продолжениях стороны BC за точку C, стороны BA за точку A, стороны AC за точку C, причём  B1C1BC.  Найдите угол B.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 312]      



Задача 53826

Темы:   [ Подобные треугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тригонометрические уравнения ]
Сложность: 3+
Классы: 8,9

Равнобедренные треугольники ABC  (AB = BC)  и A1B1C1  (A1B1 = B1C1)  равны. Вершины A1, B1 и C1 расположены соответственно на продолжениях стороны BC за точку C, стороны BA за точку A, стороны AC за точку C, причём  B1C1BC.  Найдите угол B.

Прислать комментарий     Решение

Задача 54312

Темы:   [ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции ABCD боковая сторона AB и меньшее основание BC равны 2, а BD перпендикулярно AB. Найдите площадь этой трапеции.

Прислать комментарий     Решение


Задача 54396

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  медиана AD и биссектриса CE перпендикулярны. Найдите величину угла ADB.

Прислать комментарий     Решение

Задача 54453

Темы:   [ Правильный (равносторонний) треугольник ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла $ {\frac{45}{98}}$ площади треугольника ABC?

Прислать комментарий     Решение


Задача 54463

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса CD, при этом величины углов ADC и CDB относятся как 7:5. Найдите AD, если известно, что BC = 1, а угол BAC равен 30o.

Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .