ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что BL : LC = 2 : 5. Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём BO : OM = 7 : 4. Найдите отношение, в котором точка M делит сторону AC. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 829]
Через точку на стороне четырёхугольника проведена прямая, параллельная диагонали, до пересечения с соседней стороной четырёхугольника. Через полученную точку проведена прямая, параллельная другой диагонали, и т.д. Докажите, что пятая точка, полученная таким способом, совпадет с исходной.
Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
В треугольнике ABC точка K на стороне AB и точка M на стороне AC расположены так, что AK : KB = 3 : 2, а AM : NC = 4 : 5.
В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что BL : LC = 2 : 5. Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём BO : OM = 7 : 4. Найдите отношение, в котором точка M делит сторону AC.
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|