ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что равные хорды удалены от центра окружности на равные расстояния.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]      



Задача 53246

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4+
Классы: 8,9

В треугольнике KLM проведена биссектриса MN. Через вершину M проходит окружность, касающаяся стороны KL в точке N и пересекающая сторону KM в точке P, а сторону LM — в точке Q. Отрезки KP, QM и LQ соответственно равны k, m и q .Найдите MN.

Прислать комментарий     Решение


Задача 53691

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
Сложность: 5-
Классы: 8,9

Пусть R — радиус описанной окружности треугольника ABC, ra — радиус вневписанной окружности этого треугольника, касающейся стороны BC. Докажите, что квадрат расстояния между центрами этих окружностей равен R2 + 2Rra.

Прислать комментарий     Решение


Задача 52876

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
Сложность: 2+
Классы: 8,9

Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

Прислать комментарий     Решение

Задача 53908

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что равные хорды удалены от центра окружности на равные расстояния.

Прислать комментарий     Решение

Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .