ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Докажите, что при центральной симметрии окружность переходит в окружность.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника. Докажите, что многочлен x44 + x33 + x22 + x11 + 1 делится на x4 + x3 + x2 + x + 1. Чему равно произведение Точка D – середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 285]
В прямой угол вписана окружность радиуса R, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.
К окружности, вписанной в квадрат со стороной a, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника.
Точка D – середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.
В равнобедренный треугольник с основанием, равным a, вписана окружность и к ней проведены три касательные так, что они отсекают от данного треугольника три маленьких треугольника, сумма периметров которых равна b. Найдите боковую сторону данного треугольника.
Окружность, вписанная в треугольник ABC, касается его сторон AB, BC и AC соответственно в точках K, M и N. Найдите угол KMN, если ∠A = 70°.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 285]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке