ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности касаются внешним (внутренним) образом. Докажите, что сумма (разность) их радиусов равна расстоянию между центрами. Верно ли обратное?

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 329]      



Задача 53049

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.

Прислать комментарий     Решение


Задача 53050

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Две окружности радиусов R и r (R > r) касаются внешним образом. Найдите радиусы окружностей, касающихся обеих данных окружностей и их общей внешней касательной.

Прислать комментарий     Решение


Задача 53125

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Две окружности касаются внутренним образом в точке A. Из центра O большей окружности проведён радиус OB, касающийся меньшей окружности в точке C. Найдите $ \angle$BAC.

Прислать комментарий     Решение


Задача 53996

Темы:   [ Касающиеся окружности ]
[ Взаимное расположение двух окружностей ]
Сложность: 4
Классы: 8,9

Две окружности касаются внешним (внутренним) образом. Докажите, что сумма (разность) их радиусов равна расстоянию между центрами. Верно ли обратное?

Прислать комментарий     Решение


Задача 55444

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

В прямоугольном треугольнике ABC катет AB = 3, катет AC = 6. Центры окружностей радиусов 1, 2 и 3 находятся соответственно в точках A, B и C. Найдите радиус окружности, касающейся каждой из трёх данных окружностей внешним образом.

Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .