ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 9702]      



Задача 109437

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенство треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ?
Прислать комментарий     Решение


Задача 116514

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Касающиеся сферы ]
[ Неопределено ]
Сложность: 2+
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Прислать комментарий     Решение

Задача 35076

Темы:   [ Неравенство треугольника (прочее) ]
[ Стереометрия (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что шесть ребер любого тетраэдра можно разбить на три пары (a,b), (c,d), (e,f) так, чтобы из отрезков длин a+b, c+d, e+f можно было составить треугольник.
Прислать комментарий     Решение


Задача 35645

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2+
Классы: 8,9

Стороны синего и зеленого правильных треугольников соответственно параллельны. Периметр синего треугольника равен 4, а периметр зеленого треугольника равен 5. Найдите периметр шестиугольника, полученного в пересечении этих треугольников.
Прислать комментарий     Решение


Задача 54068

Тема:   [ Признаки и свойства параллелограмма ]
Сложность: 2+
Классы: 8,9

Точки K, L, M и N – середины сторон соответственно AB, BC, CD и AD параллелограмма ABCD.
Докажите, что четырёхугольник с вершинами в точках пересечения прямых AL, BM, CN и DK – параллелограмм.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .