Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.

   Решение

Задачи

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 830]      



Задача 52859

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 53138

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

Прислать комментарий     Решение

Задача 54060

Темы:   [ Периметр треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Каждая из трёх прямых, параллельных сторонам и проходящих через центр вписанной окружности треугольника, отсекают от него некоторый треугольник. Докажите, что сумма периметров отсечённых треугольников вдвое больше периметра исходного треугольника.

Прислать комментарий     Решение

Задача 54165

 [Теорема о средней линии трапеции]
Темы:   [ Средняя линия трапеции ]
[ Вспомогательные равные треугольники ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме.

Прислать комментарий     Решение

Задача 54169

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.

Прислать комментарий     Решение

Страница: << 140 141 142 143 144 145 146 >> [Всего задач: 830]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .