ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая — соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 292]      



Задача 110765

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10

На основании AD и боковой стороне AB равнобедренной трапеции ABCD взяты точки E, F соответственно так, что CDEF – также равнобедренная трапеция. Докажите, что  AE·ED = AF·FB.

Прислать комментарий     Решение

Задача 54909

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Площадь равнобедренной трапеции равна $ \sqrt{3}$. Угол между диагональю и основанием на 20o больше угла между диагональю и боковой стороной. Найдите острый угол трапеции, если её диагональ равна 2.

Прислать комментарий     Решение


Задача 102727

Темы:   [ Теорема косинусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Основания трапеции равны 3 см и 5 см. Одна из диагоналей трапеции равна 8 см, угол между диагоналями равен 60o. Найдите периметр трапеции.

Прислать комментарий     Решение


Задача 53164

Темы:   [ Теорема синусов ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение высоты трапеции к радиусу описанной окружности равно $ \sqrt{2/3}$. Найдите углы трапеции.

Прислать комментарий     Решение


Задача 54178

Темы:   [ Касающиеся окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Две окружности касаются внешним образом в точке K. Одна прямая касается этих окружностей в различных точках A и B, а вторая — соответственно в различных точках C и D. Общая касательная к окружностям, проходящая через точку K, пересекается с этими прямыми в точках M и N. Найдите MN, если AC = a, BD = b.

Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .