Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 136]
Дана треугольная призма ABCA1B1C1. Точки M, N и K – середины рёбер BC, AC и AB соответственно.
Докажите, что прямые MA1, NB1 и KC1 пересекаются в одной точке.
Докажите, что около любого треугольника можно описать окружность, притом единственную.
В четырёхугольнике ABCD точка E – середина AB, F – середина CD.
Докажите, что середины отрезков AF, CE, BF и DE являются вершинами параллелограмма.
Дана трапеция ABCD (BC || AD). Точки P, M,
Q, N являются серединами сторон AB, BC, CD и DA
соответственно.
Докажите, что отрезки AQ, PD и MN пересекаются
в одной точке.
Одна из боковых сторон трапеции равна сумме оснований.
Докажите, что биссектрисы углов при этой стороне пересекаются на другой боковой стороне.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 136]