Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 136]
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.
На плоскости даны три попарно пересекающиеся окружности, центры которых не лежат на одной прямой.
Докажите, что прямые, содержащие три общие хорды каждой пары этих окружностей пересекаются в одной точке.
Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC (∠B = 90°), касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.
|
|
Сложность: 4- Классы: 9,10
|
На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке.
|
|
Сложность: 4- Классы: 8,9,10
|
Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно.
Докажите, что эти три перпендикуляра пересекаются в одной точке.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 136]