Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 136]
Стороны AB, BC, CD и DA описанного четырёхугольника ABCD касаются его вписанной окружности в точках K, L, M и N соответственно. Прямая, проведённая через точку C параллельно диагонали BD, пересекает прямые NL и KM в точках P и Q соответственно. Докажите, что CP = CQ.
На сторонах AB, BC и AC треугольника ABC выбраны
соответственно точки C1, A1 и B1, причём отрезки AA1, BB1 и CC1 пересекаются в одной точке. Прямая, проходящая через точку B1 параллельно AA1, пересекает отрезок CC1 в точке B2. Прямая, проходящая через точку C1 параллельно AA1, пересекает отрезок BB1 в точке C2. Докажите, что прямые BC, B1C1 и B2C2 пересекаются в одной точке или параллельны.
В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.
Вписанная окружность касается сторон BC, AC и AB треугольника ABC в точках A1, B1 и C1 соответственно. Точки A2, B2 и C2 – центры окружностей, вписанных в треугольники соответственно AB1C1, BA1C1 и CA1B1 соответственно.
Докажите, что прямые A1A2, B1B2 и C1C2
пересекаются в одной точке.
Пусть BL – биссектриса треугольника ABC. Внутри треугольника BLC нашлась такая точка P, что ∠BPC = 90° и ∠LPC + ∠LBC = 180°. Точка
O – центр описанной окружности треугольника LPB. Докажите, что прямые CO, BL и AM, где M – середина стороны BC, пересекаются в одной точке.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 136]