Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 136]
Дан треугольник ABC. Из точек A1, B1 и C1, лежащих на прямых BC, AC и AB соответственно, восставлены перпендикуляры к этим прямым.
Докажите, что эти перпендикуляры пересекаются в одной точке тогда и только тогда, когда C1A² – C1B² + A1B² – A1C² + B1C² – B1A² = 0.
Вневписанные окружности треугольника ABC касаются сторон BC, AC и AB в точках A1, B1
и C1 соответственно.
Докажите, что перпендикуляры, восставленные к этим сторонам в точках соответственно A1, B1 и C1, пересекаются в одной точке.
Дан правильный треугольник ABC и произвольная точка D. Точки A1, B1 и C1 –
центры окружностей, вписанных в треугольники BCD, CAD и ABD соответственно. Докажите, что перпендикуляры, опущенные из вершин A, B
и C на прямые соответственно B1C1,
A1C1 и A1B1, пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке.
|
|
Сложность: 4 Классы: 9,10,11
|
Вписанная окружность разностороннего треугольника ABC касается стороны AB в точке C'. Окружность с диаметром BC' пересекает вписанную окружность вторично в точке A1, а биссектрису угла B вторично в точке A2. Окружность с диаметром AC' пересекает вписанную окружность вторично в точке B1, а биссектрису угла A вторично в точке B2. Докажите, что прямые AB, A1B1, A2B2 пересекаются в одной точке.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 136]