Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.

Вниз   Решение


31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?

ВверхВниз   Решение


Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.

ВверхВниз   Решение


Пусть число m имеет вид  m = 2a5bm1,  где  (10, m1) = 1.  Положим  k = max {a, b}.
Докажите, что период дроби 1/m начинается с (k+1)-й позиции после запятой, и имеет такую же длину, как и период дроби 1/m1.

ВверхВниз   Решение


Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

ВверхВниз   Решение


Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 159]      



Задача 56452

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
Сложность: 2
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом C проведена высота  CH. Докажите, что  AC² = AB·AH  и  CH² = AH·BH.

Прислать комментарий     Решение

Задача 56475

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 9

На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

Прислать комментарий     Решение

Задача 54191

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит гипотенузу на отрезки, равные a и b. Найдите катеты.

Прислать комментарий     Решение

Задача 54237

Тема:   [ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

Прислать комментарий     Решение


Задача 52347

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

Около трапеции ABCD описана окружность радиуса 6. Центр этой окружности лежит на основании AD,  BC = 4.  Найдите площадь трапеции.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .