ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны. Выведите из теоремы 61013 то, что
Основанием пирамиды SABC является правильный треугольник ABC ,
сторона которого равна В выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника. Докажите, что диагонали равны. Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам. Докажите, что в любом выпуклом многоугольнике,
кроме параллелограмма, можно выбрать три стороны, при
продолжении которых образуется треугольник, объемлющий
данный многоугольник.
В любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник. Докажите это. На плоскости дан прямой угол. Окружность с центром, расположенным вне этого угла, касается продолжения одной из его сторон, пересекает другую сторону в точках A и B и пересекает биссектрису этого угла в точках C и D. AB = 4
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите площадь треугольника BCK, если BC = a, CA = b.
Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.
Точки M и N лежат на сторонах соответственно AD и BC ромба
ABCD, причём
DM : AM = BN : NC = 2 : 1. Найдите MN, если известно, что
сторона ромба равна a, а
В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении AN : BN = 2 : 1. Найдите тангенс угла DNC. В одной из граней двугранного угла, равного ϕ , взята точка A на расстоянии a от ребра. Найдите расстояние от точки A до плоскости другой грани.
В прямоугольном треугольнике
ABC
Из точки A проведены два луча, пересекающие данную окружность: один — в точках B и C, другой — в точках D и E. Известно, что AB = 7, BC = 7, AD = 10. Найдите DE.
Через центр O вписанной окружности ω треугольника ABC проведена прямая, параллельная стороне BC и пересекающая стороны AB и AC соответственно в точках M и N. k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества. В треугольнике ABC проведены медианы AM и BP. Известно, что ∠APB = ∠BMA, cos∠ACB = 0,8, BP = 1. Найдите площадь треугольника ABC . Пусть O – центр описанной окружности остроугольного треугольника ABC, точка M – середина стороны AC. Прямая BO пересекает высоты AA1 и CC1 в точках Ha и Hc соответственно. Описанные окружности треугольников BHaA и BHcC вторично пересекаются в точке K. Докажите, что K лежит на прямой BM. В треугольнике ABC O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Точка C лежит на стороне MN ромба KLMN, причём CN = 2CM и угол MNK равен 120o. Найдите отношение косинусов углов CKN и CLM.
Диагональ прямоугольной трапеции и её боковая сторона равны. Внутри параллелограмма ABCD отметили точку E так, что CD = CE. В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 993]
В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.
С помощью циркуля и линейки постройте параллелограмм по отношению диагоналей, углу между диагоналями и стороне.
Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.
На плоскости нарисованы два квадрата - ABCD и KLMN (их вершины перечислены против часовой стрелки). Докажите, что середины отрезков AK, BL, CM, DN также являются вершинами квадрата.
В выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника. Докажите, что диагонали равны.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 993]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке