ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

Вниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.

ВверхВниз   Решение


Укажите неравносторонний треугольник, который можно разделить на три равных треугольника.

ВверхВниз   Решение


В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 1 и 3. Точка K делит сторону AC в отношении 7:1, считая от точки A. Что больше: длина AC или длина BK?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1667]      



Задача 116143

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 7,8,9

В окружности провели диаметр AB и параллельную ему хорду CD, так, что расстояние между ними равно половине радиуса этой окружности (см. рис.). Найдите угол CAB.

Прислать комментарий     Решение

Задача 35425

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Укажите неравносторонний треугольник, который можно разделить на три равных треугольника.

Прислать комментарий     Решение

Задача 54428

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 1 и 3. Точка K делит сторону AC в отношении 7:1, считая от точки A. Что больше: длина AC или длина BK?

Прислать комментарий     Решение


Задача 54429

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В прямоугольнике ABCD длины отрезков AB и BD равны соответственно 2 и $ \sqrt{7}$. Точка M делит отрезок CD в отношении 1:2, считая от точки C, K - середина AD. Что больше: длина BK или длина AM?

Прислать комментарий     Решение


Задача 54430

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 5 и 6. Точка K делит сторону AC в отношении 3:1, считая от точки A, AH - высота треугольника ABC. Что больше: 2 или отношение длины BK к длине AH?

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1667]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .