ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник C1C2O. В нём проводится биссектриса C2C3, затем
в треугольнике C2C3O – биссектриса C3C4 и так далее. Докажите, что число abcd делится на 99 тогда и только тогда, когда число ab + cd делится на 99.
Составьте уравнение плоскости, содержащей прямую
С помощью циркуля и линейки постройте параллелограмм по отношению диагоналей, углу между диагоналями и стороне.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
С помощью циркуля и линейки постройте треугольник ABC, если заданы его наименьший угол при вершине A и отрезки d = AB – BC и e = AC – BC.
С помощью циркуля и линейки постройте трапецию по отношению её оснований, двум углам при одном из этих оснований и высоте.
На стороне BC остроугольного треугольника ABC постройте такую точку M , что прямая, проходящая через основания перпендикуляров, опущенных из M на прямые AB и AC , параллельна BC .
С помощью циркуля и линейки постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.
С помощью циркуля и линейки постройте параллелограмм по отношению диагоналей, углу между диагоналями и стороне.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке