ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и $ \angle$BMC = 45o. Найдите радиус окружности.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 769]      



Задача 53571

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные многоугольники ]
Сложность: 3+
Классы: 8,9

Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?

Прислать комментарий     Решение


Задача 53986

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность касается стороны BC треугольника ABC в точке M и продолжений двух других сторон. Докажите, что прямая AM делит периметр треугольника пополам.

Прислать комментарий     Решение


Задача 54673

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и $ \angle$BMC = 45o. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 55483

Темы:   [ Две касательные, проведенные из одной точки ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что:

а) отрезок AP равен полупериметру p треугольника ABC;

б) BM = CK;

в) BC = PL.

Прислать комментарий     Решение


Задача 55506

Темы:   [ Окружность, вписанная в угол ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

К данной окружности проведены две параллельные касательные и третья касательная, пересекающая их. Докажите, что радиус окружности есть среднее геометрическое отрезков третьей касательной.

Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .