ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и $ \angle$BMC = 45o. Найдите радиус окружности.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



Задача 53269

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Окружность, проходящая через точку D и касающаяся сторон AB и BC равнобедренной трапеции ABCD, пересекает стороны AD и CD соответственно в точках M и N. Известно, что AM : DM = 1 : 3, CN : DN = 4 : 3. Найдите основание BC, если AB = 7 и AD = 6.

Прислать комментарий     Решение


Задача 54673

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Одна из двух прямых, проходящих через точку M, касается окружности в точке C, а вторая пересекает эту окружность в точках A и B, причём A — середина отрезка BM. Известно, что MC = 2 и $ \angle$BMC = 45o. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 52447

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC угол B — прямой, а AB = BC = 2. Окружность касается обоих катетов в их серединах и высекает на гипотенузе хорду DE. Найдите площадь треугольника BDE.

Прислать комментарий     Решение


Задача 52448

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Центр окружности, касающейся стороны BC треугольника ABC в точке B и проходящей через точку A, лежит на отрезке AC. Найдите площадь треугольника ABC, если известно, что BC = 6 и AC = 9.

Прислать комментарий     Решение


Задача 53233

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC известны, что AC = 4, AB = BC = 6. Биссектриса угла C пересекает сторону AB в точке D. Через точку D проведена окружность, касающаяся стороны AC в её середине и пересекающая отрезок AD в точке E. Найдите площадь треугольника DEC.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .