ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 53687

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла, равного α  (α < 90°),  с вершиной в точке O взяты точки A и B, причём  OA = a,  OB = b.
Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.

Прислать комментарий     Решение

Задача 53822

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В равнобедренную трапецию ABCD  (BC || AD)  вписана окружность радиуса R, касающаяся основания AD в точке P и пересекающая отрезок BP в такой точке Q, что  PQ = 3BQ.  Найдите углы и площадь трапеции.

Прислать комментарий     Решение

Задача 54660

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Окружности (построения) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла такую точку C, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 66232

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Две окружности, проходящие через вершину A, касаются стороны BC в точках B и C соответственно. Пусть D – вторая точка пересечения этих окружностей (A лежит ближе к BC, чем D). Известно, что  BC = 2BD.  Докажите, что  ∠DAB = 2∠ADB.

Прислать комментарий     Решение

Задача 102294

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Касательные прямые и касающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружность, проходящая через вершину A треугольника ABC, касается стороны BC в точке M и пересекает стороны AC и AB соответственно в точках L и K, отличных от вершины A. Найдите отношение AC : AB, если известно, что длина отрезка LC в два раза больше длины отрезка KB, а отношение CM : BM = 3 : 2.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .