Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 603]
На продолжении стороны AB ромба ABCD за точку B взята точка M, причём MD = MC и ∠MDC = arctg 8/5. Найдите отношение отрезков MA и MB.
На продолжении стороны AD ромба ABCD за точку D взята точка K. Прямые AC и BK пересекаются в точке Q. Известно, что AK = 14 и что точки A, B и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку AK. Найдите BK.
На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно, причём BD + DE = BC и BE + ED = AB. Известно, что четырёхугольник ADEC – вписанный. Докажите, что треугольник ABC – равнобедренный.
Хорды AB и CD окружности пересекаются в точке M, причём
AM = AC.
Докажите, что продолжения высот AA1 и DD1 треугольников CAM и BDM пересекаются на окружности.
Пусть M и N – середины сторон AD и BC
прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC.
Докажите, что ∠QNM = ∠MNP.
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 603]