Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 603]
Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены высоты AD и CE. Точки M и N – основания перпендикуляров, опущенных на прямую DE из точек A и C соответственно. Докажите, что ME = DN.
|
|
Сложность: 3+ Классы: 8,9,10
|
Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что AM = MD. Докажите, что ∠PMB = ∠QMB.
|
|
Сложность: 3+ Классы: 10,11
|
Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
а) делит периметр треугольника ABC пополам;
б) параллельна биссектрисе угла ACB.
Точка M лежит на боковой стороне CD трапеции ABCD. Известно, что ∠BCD = ∠CBD = ∠ABM = arccos ⅚ и AB = 9. Найдите BM.
Страница:
<< 83 84 85 86
87 88 89 >> [Всего задач: 603]