ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 448]      



Задача 54709

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Стороны параллелограмма равны 2 и 4, а угол между ними равен 60o. Через вершину этого угла проведены прямые, проходящие через середины двух других сторон параллелограмма. Найдите косинус угла между этими прямыми.

Прислать комментарий     Решение


Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Задача 57592

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9,10

Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.
Прислать комментарий     Решение


Задача 54699

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

Прислать комментарий     Решение


Задача 102206

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника.
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .