|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC — равнобедренный.
Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда | R - r| < d < R + r. В равнобедренном треугольнике радиус вписанной окружности составляет 2/7 высоты, а периметр этого треугольника равен 56. Найдите его стороны. Имеется угольник с углом в 70°. Как построить с его помощью угол в 40°? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]
Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?
Докажите, что у выпуклого многоугольника может быть не более трёх острых углов.
Имеется угольник с углом в 70°. Как построить с его помощью угол в 40°?
В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что ∠AC'B' = ∠B'A'C, ∠CB'A' = ∠A'C'B, ∠BA'C' = ∠C'B'A. Докажите, что точки A', B', C' – середины сторон треугольника ABC.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|