ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Прямая касается окружности в точке M, то есть имеет с прямой
единственную общую точку M. б) Докажите, что прямая, проходящая через некоторую точку окружности и перпендикулярная радиусу, проведённому в эту точку, является касательной к окружности, то есть имеет с окружностью единственную общую точку. РешениеВершины B, C, D четырёхугольника ABCD расположены на окружности с центром O, которая пересекает сторону AB в точке F, а сторону AD – в точке E. Известно, что угол BAD прямой, хорда EF равна хорде FB и хорды BC, CD, ED равны между собой. Найдите угол ABO. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 239]
Отрезок BE разбивает треугольник ABC на два подобных треугольника, причём коэффициент подобия равен Найдите углы треугольника ABC.
а) Прямая касается окружности в точке M, то есть имеет с прямой
единственную общую точку M. б) Докажите, что прямая, проходящая через некоторую точку окружности и перпендикулярная радиусу, проведённому в эту точку, является касательной к окружности, то есть имеет с окружностью единственную общую точку.
Через середину гипотенузы прямоугольного треугольника проведён к ней перпендикуляр. Отрезок этого перпендикуляра, заключённый внутри треугольника, равен c, а отрезок, заключённый между одним катетом и продолжением другого, равен 3c. Найдите гипотенузу.
Вершины B, C, D четырёхугольника ABCD расположены на окружности с центром O, которая пересекает сторону AB в точке F, а сторону AD – в точке E. Известно, что угол BAD прямой, хорда EF равна хорде FB и хорды BC, CD, ED равны между собой. Найдите угол ABO.
Вершины B, C, D четырёхугольника ABCD расположены на окружности с центром O. Эта окружность пересекает сторону AD в точке E, а сторону AB – в точке F. Известно, что хорды BF, FE и ED равны, а также равны между собой хорды BC и CD. Найдите угол OBC, если известно, что угол DAB прямой.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 239] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|