ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В четырехугольнике ABCD острый угол между диагоналями равен $ \alpha$. Через каждую вершину проведена прямая, перпендикулярная диагонали, не содержащей эту вершину. Найдите отношение площади четырёхугольника, ограниченного этими прямыми, к площади четырёхугольника ABCD.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 184]      



Задача 53515

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

В трапеции ABCD диагонали AC и BD взаимно перпендикулярны, $ \angle$BAC = $ \angle$CDB. Продолжения боковых сторон AB и DC пересекаются в точке K, образуя угол AKD, равный 30o. Найдите площадь треугольника AKD, если площадь трапеции равна P.

Прислать комментарий     Решение


Задача 52411

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Около треугольника ABC описана окружность. Медиана AD продолжена до пересечения с этой окружностью в точке E. Известно, что AB + AD = DE, $ \angle$BAD = 60o, AE = 6. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 55032

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Ортогональная (прямоугольная) проекция ]
[ Отношения площадей ]
Сложность: 4
Классы: 8,9

В четырехугольнике ABCD острый угол между диагоналями равен $ \alpha$. Через каждую вершину проведена прямая, перпендикулярная диагонали, не содержащей эту вершину. Найдите отношение площади четырёхугольника, ограниченного этими прямыми, к площади четырёхугольника ABCD.

Прислать комментарий     Решение


Задача 110903

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность σ с центром в точке O на стороне AC треугольника ABC касается сторон AB и BC в точках D и E соответственно. Известно, что AD= 2CE , а угол DOE равен arcctg . Найдите углы треугольника ABC и отношение его площади к площади круга, ограниченного окружностью σ .
Прислать комментарий     Решение


Задача 110904

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Окружность σ с центром в точке O на стороне AC треугольника ABC касается сторон AB и BC в точках D и E соответственно. Известно, что AD= 3CE , а угол DOE равен arcctg . Найдите углы треугольника ABC и отношение его площади к площади круга, ограниченного окружностью σ .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 184]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .