ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
|
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 463]
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
В равнобедренном треугольнике ABC (AB = BC) биссектрисы BD
и AF пересекаются в точке O. Отношение площади треугольника DOA
к площади треугольника BOF равно
В равнобедренном треугольнике ABC (AB = AC) проведены
биссектрисы AA1, BB1 и CC1. Площадь треугольника ABC
относится к площади треугольника
A1B1C1 как
В треугольнике ABC на стороне AC взята точка M, а на стороне BC — точка N. Отрезки AN и BM пересекаются в точке O. Найдите площадь треугольника CMN, если площади треугольников OMA, OAB и OBN соответственно равны s1, s2 и s3.
Дана трапеция ABCD с основаниями
AD = 3
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 463]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке