ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.

Вниз   Решение


На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
  а)  S = M1M2 + M3 – ... + (–1)n + 1Mn;
  б)  SM1 - M2 + M3 – ... + (–1)m + 1Mm   при m чётном и
       SM1M2 + M3 – ... + (–1)m + 1Mm   при m нечётном.

ВверхВниз   Решение


На плоскости проведено несколько полос разной ширины. Никакие две из них не параллельны. Как нужно сдвинуть их параллельно самим себе, чтобы площадь их общей части была наибольшей?

ВверхВниз   Решение


В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, лежащей между точками B и C, причём BD : BC = $ \alpha$ ($ \alpha$ < 1). Через точку D проведена прямая, параллельная стороне AB и пересекающая сторону AC в точке E. Найдите отношение площадей треугольников ABD и ECD.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96]      



Задача 55085

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, лежащей между точками B и C, причём BD : BC = $ \alpha$ ($ \alpha$ < 1). Через точку D проведена прямая, параллельная стороне AB и пересекающая сторону AC в точке E. Найдите отношение площадей треугольников ABD и ECD.

Прислать комментарий     Решение


Задача 55086

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

На стороне AB треугольника ABC между точками A и B взята точка D, причём AD : AB = $ \alpha$ ($ \alpha$ < 1); на стороне BC между точками B и C взята точка E, причём BE : BC = $ \beta$ ($ \beta$ < 1). Через точку E проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей треугольников BDE и BEF.

Прислать комментарий     Решение


Задача 55206

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.

Прислать комментарий     Решение


Задача 54981

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

Точки K и L расположены на стороне BC треугольника ABC, причём  BK : KC = 1 : 3  и  BL : LC = 1 : 2.  Tочки M и N расположены на стороне AC этого же треугольника, причём  AM = MN = NC.  Найдите отношение площади четырёхугольника KLPQ к площади треугольника ABC, если P и Q являются точками пересечения прямой BN с прямыми ML и AK соответственно.

Прислать комментарий     Решение

Задача 54982

Темы:   [ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4-
Классы: 8,9

Точки P и Q на стороне BC треугольника ABC выбраны так, что  BP : PQ : QC = 2 : 3 : 3. Точка R на продолжении стороны AB этого треугольника выбрана так, что B принадлежит отрезку AR и  AB : BR = 1 : 2.  Найдите отношение площади четырёхугольника PQST к площади треугольника ABC, если S и T являются точками пересечения прямых AQ и AP с прямой CR соответственно.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .