ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)². Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что SABCD ≤ EG·HF. |
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 462]
Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если KL = LM =
В треугольнике ABC точка D лежит на стороне AC, причём AD = 2DC. Точка E лежит на стороне BC. Площадь треугольника ABD равна 3, площадь треугольника AED равна 1. Отрезки AE и BD пересекаются в точке O. Найдите отношение площадей треугольников ABO и OED.
Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.
В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM.
Медианы AN и BM треугольника ABC равны 6 и 9 соответственно и пересекаются в точке K, причём угол AKB равен 30o. Найдите площадь треугольника ABC.
Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 462]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке