ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания  BC = 7  за точку B. Найдите BE, если  AE = 12.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Вниз   Решение


На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

ВверхВниз   Решение


Даны две окружности, пересекающиеся в точках $P$ и $Q$. Произвольная прямая $l$, проходящая через $Q$, повторно пересекает окружности в точках $A$ и $B$. Прямые, касающиеся окружностей в точках $A$ и $B$, пересекаются в точке $C$, а биссектриса угла $CPQ$ пересекает прямую $AB$ в точке $D$. Докажите, что все точки $D$, которые можно так получить, выбирая по-разному прямую $l$, лежат на одной окружности.

ВверхВниз   Решение


Автор: Храбров А.

Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.

ВверхВниз   Решение


Фома и Ерёма нашли на дороге по пачке 11-рублевок. В чайной Фома выпил 3 стакана чая, съел 4 калача и 5 бубликов. Ерёма выпил 9 стаканов чая, съел 1 калач и 4 бублика. Стакан чая, калач и бублик стоят по целому числу рублей. Оказалось, что Фома может расплатиться 11-рублевками без сдачи. Покажите, что это может сделать и Ерёма.

ВверхВниз   Решение


Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



Задача 55350

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

Прислать комментарий     Решение


Задача 64467

Темы:   [ Построения одной линейкой ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На каждой стороне треугольника ABC отмечены две различные точки. Известно, что это основания высот и биссектрис.

  а) Пользуясь только линейкой без делений, определите, где высоты, а где биссектрисы.

  б) Решите пункт а), проведя только три прямых.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .