ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности даны точки A, B и C, причём точка B более удалена от от прямой l, касающейся окружности в точке A, чем C. Прямая AC пересекает прямую, проведённую через точку B параллельно l, в точке D. Докажите, что AB² = AC·AD. Решение |
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 499]
В окружности проведены диаметр MN и хорда AB, параллельная диаметру MN. Касательная к окружности в точке M пересекает прямые NA и NB соответственно в точках P и Q. Известно, что MP = p, MQ = q. Найдите MN.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке P. Хорда PQ параллельна катету BC. Прямая BQ пересекает катет AC в точке D. Известно, что AC = b, DC = d. Найдите BC.
На окружности даны точки A, B и C, причём точка B более удалена от от прямой l, касающейся окружности в точке A, чем C. Прямая AC пересекает прямую, проведённую через точку B параллельно l, в точке D. Докажите, что AB² = AC·AD.
Точка M лежит на диаметре AB окружности. Хорда CD
окружности проходит через точку M и пересекает прямую AB под
углом в 45°.
Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что BM = CM.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|