ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали четырёхугольника PQRS, вписанного в окружность, пересекаются в точке D. На прямой PR взята точка A, причём
∠SAD = 50°, ∠PQS = 70°, |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1275]
Диагонали четырёхугольника PQRS, вписанного в окружность, пересекаются в точке D. На прямой PR взята точка A, причём
∠SAD = 50°, ∠PQS = 70°,
Две окружности пересекаются в точках A и K. Их центры расположены по разные стороны от прямой, содержащей отрезок AK. Точки B и C лежат на разных окружностях. Прямая AB касается одной окружности в точке A. Прямая AC касается другой окружности также в точке A, BK = 1, CK = 4, tg∠BAC = . Найдите SABC.
Докажите, что прямая, соединяющая середины дуг AB и AC, где A, B, и C – три точки одной окружности, отсекает на хордах AB и AC равные отрезки, считая от точки A.
Касательные к описанной вокруг треугольника ABC окружности, проведённые в точках A и B, пересекаются в точке P.
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|