ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Касающиеся окружности
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Три окружности S1, S2 и S3 попарно касаются друг друга в трёх различных точках. Докажите, что прямые, соединяющие точку касания окружностей S1 и S2 с двумя другими точками касания, пересекают окружность S3 в точках, являющихся концами её диаметра. Решение |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 329]
Катеты прямоугольного треугольника равны 6 и 8. На всех его сторонах как на диаметрах построены полуокружности, лежащие вне треугольника. Найдите радиус окружности, касающейся построенных полуокружностей.
Три окружности S1, S2 и S3 попарно касаются друг друга в трёх различных точках. Докажите, что прямые, соединяющие точку касания окружностей S1 и S2 с двумя другими точками касания, пересекают окружность S3 в точках, являющихся концами её диаметра.
Две окружности касаются друг друга внешним образом. Четыре точки A, B, C и D касания их общих внешних касательных последовательно соединены. Докажите, что в четырёхугольник ABCD можно вписать окружность и найдите её радиус, если радиусы данных окружностей равны R и r.
По неподвижной окружности, касаясь её изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности?
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 329] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|