ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h. Решение |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 563]
ABC — разносторонний остроугольный треугольник. Сколько на плоскости существует таких точек D, для которых множество {A, B, C, D} имеет ось симметрии?
Докажите, что композиция двух симметрий относительно параллельных прямых есть параллельный перенос в направлении, перпендикулярном к этим прямым, на величину, равную удвоенному расстоянию между ними.
На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h.
На плоскости заданы две пересекающиеся прямые, и на них отмечено по одной точке (D и E). Постройте треугольник ABC, у которого биссектрисы CD и AE лежат на данных прямых, а основания этих биссектрис— данные точки D и E.
Пусть AD — биссектриса треугольника ABC. Через вершину A проведена прямая, перпендикулярная AD, а из вершины B опущен перпендикуляр BB1 на эту прямую. Докажите, что периметр треугольника BB1C больше периметра треугольника ABC.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|