ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
>>
Центральная симметрия помогает решить задачу
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109]
Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
С помощью циркуля и линейки проведите через общую точку A окружностей S1 и S2 прямую так, чтобы эти окружности высекали на ней равные хорды.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 109] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|