ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 65051

Темы:   [ Правильный тетраэдр ]
[ Движение помогает решить задачу ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Три равных правильных тетраэдра имеют общий центр. Могут ли все грани многогранника, являющегося их пересечением, быть равны?

Прислать комментарий     Решение

Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 64666

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Параллельное проектирование (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?

Прислать комментарий     Решение

Задача 109455

Темы:   [ Ортогональная проекция (прочее) ]
[ Параллельный перенос ]
[ Движение помогает решить задачу ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4-
Классы: 10,11

Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?
Прислать комментарий     Решение


Задача 56471

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Векторы помогают решить задачу ]
[ Движение помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD взяты соответственно точки P, Q, R и Sб  O – точка пересечения отрезков PR и QS.
Докажите,что если  AP : AB = DR : DC  и  AS : AD = BQ : BC,  то и  SO : SQ = AP : ABPQ : PR = AS : ;AD.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .