Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольник ABC со сторонами  AB = 5,  BC = 7,  CA = 10  вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.

Вниз   Решение


Автор: Пешнин А.

В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета?

ВверхВниз   Решение


Пусть ABC – остроугольный треугольник, в котором  AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω.

ВверхВниз   Решение


Автор: Фольклор

Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если  OD = OE,  то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.

ВверхВниз   Решение


Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
  а) достаточно четырёх взвешиваний и
  б) недостаточно трёх.

ВверхВниз   Решение


Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 352]      



Задача 55555

Темы:   [ Симметрия помогает решить задачу ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.

Прислать комментарий     Решение

Задача 55716

Темы:   [ Поворот (прочее) ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что при повороте окружность переходит в окружность.

Прислать комментарий     Решение


Задача 56501

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах BC и CD параллелограмма ABCD построены внешним образом правильные треугольники BCK и DCL.
Докажите, что треугольник AKL правильный.

Прислать комментарий     Решение

Задача 56525

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.

Прислать комментарий     Решение

Задача 65657

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 7,8,9

На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что  EF || AC  и  AF = AD.  Докажите, что  AВ = ВЕ.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .