ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки постройте на данной окружности точку, которая находилась бы на данном расстоянии от данной прямой.

Вниз   Решение


Сколько осей симметрии может быть у треугольника?

ВверхВниз   Решение


На диагоналях D1A , A1B , B1C , C1D граней куба ABCDA1B1C1D1 взяты соответственно точки M , N , P , Q , причём

D1M:D1A = BN:BA1 = B1P:B1C = DQ:DC1 = μ,

а прямые MN и PQ взаимно перпендикулярны. Найдите μ .

ВверхВниз   Решение


Докажите, что сумма внутренних двугранных углов трёхгранного угла больше 180o и меньше 540o .

ВверхВниз   Решение


a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби     делятся на n, то и сама дробь делится на n.

ВверхВниз   Решение


Решите уравнение  

ВверхВниз   Решение


В треугольной пирамиде SABC все рёбра, кроме SA , равны a , а ребро SA равно высоте треугольника ABC . Через точку A параллельно прямой BC проведена плоскость P , образующая с прямой AB угол, равный arcsin . Найдите площадь сечения пирамиды плоскостью P и радиус шара с центром на прямой, проходящей через точку S перпендикулярно плоскости треугольника ABC , касающегося плоскости P и плоскости треугольника SBC .

ВверхВниз   Решение


При каких n многочлен  (x + 1)nxn – 1  делится на:
  а)  x² + x + 1;   б)  (x² + x + 1)²;   в) (x² + x + 1)³?

ВверхВниз   Решение


а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.

б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



Задача 52586

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 52598

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 56555

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник.
Прислать комментарий     Решение


Задача 56536

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 7,8

а) Из точки A, лежащей вне окружности, выходят лучи AB и AC, пересекающие эту окружность. Докажите, что величина угла BAC равна полуразности угловых величин дуг окружности, заключенных внутри этого угла.

б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.

Прислать комментарий     Решение

Задача 52605

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Прямые, касающиеся окружностей (прочее) ]
Сложность: 3-
Классы: 8,9

Внутри данной окружности находится другая окружность. CAE и DBF - две хорды большей окружности (не пересекающиеся), касающиеся меньшей окружности в точках A и B;CND, EPF - дуги между концами хорд. Найдите угловую величину дуги CND, если дуги AMB и EPF содержат соответственно 154o и 70o.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .