ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1275]      



Задача 56540

Тема:   [ Вписанный угол (прочее) ]
Сложность: 2-
Классы: 7,8

Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.
Прислать комментарий     Решение


Задача 52586

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 52598

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 53931

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2
Классы: 8,9

На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K.
Найдите CK, если  AC = 2  и  ∠A = 30°.

Прислать комментарий     Решение

Задача 53936

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Биссектриса угла (ГМТ) ]
Сложность: 2
Классы: 8,9

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .