ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности пересекаются в точках M и K.
Через M и K проведены прямые AB и CD соответственно,
пересекающие первую окружность в точках A и C, вторую
в точках B и D. Докажите, что
AC || BD.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 499]
Вершина A остроугольного треугольника ABC
соединена отрезком с центром O описанной окружности. Из вершины A
проведена высота AH. Докажите, что
Две окружности пересекаются в точках M и K.
Через M и K проведены прямые AB и CD соответственно,
пересекающие первую окружность в точках A и C, вторую
в точках B и D. Докажите, что
AC || BD.
Из произвольной точки M, лежащей внутри данного
угла с вершиной A, опущены перпендикуляры MP и MQ
на стороны угла. Из точки A опущен перпендикуляр AK
на отрезок PQ. Докажите, что
На окружности взяты точки A, B, C и D. Прямые AB
и CD пересекаются в точке M. Докажите, что
AC . AD/AM = BC . BD/BM.
Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 499]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке