Страница: 1
2 3 4 5 6 7 >> [Всего задач: 499]
Вершина
A остроугольного треугольника
ABC
соединена отрезком с центром
O описанной окружности. Из вершины
A
проведена высота
AH. Докажите, что
BAH =
OAC.
Две окружности пересекаются в точках
M и
K.
Через
M и
K проведены прямые
AB и
CD соответственно,
пересекающие первую окружность в точках
A и
C, вторую
в точках
B и
D. Докажите, что
AC ||
BD.
Из произвольной точки
M, лежащей внутри данного
угла с вершиной
A, опущены перпендикуляры
MP и
MQ
на стороны угла. Из точки
A опущен перпендикуляр
AK
на отрезок
PQ. Докажите, что
PAK =
MAQ.
На окружности взяты точки
A,
B,
C и
D. Прямые
AB
и
CD пересекаются в точке
M. Докажите, что
AC . AD/
AM =
BC . BD/
BM.
|
|
Сложность: 2+ Классы: 7,8,9
|
Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 499]