ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB и BC остроугольного треугольника ABC внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.

   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 312]      



Задача 56888

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 8,9

На сторонах AB и BC остроугольного треугольника ABC внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.

Прислать комментарий     Решение

Задача 56891

Темы:   [ Окружность, вписанная в угол ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9

В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

Прислать комментарий     Решение

Задача 108597

Темы:   [ Геометрические неравенства ]
[ Признаки и свойства касательной ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В угол с вершиной C вписана окружность, касающаяся сторон угла в точках A и B . Отрезок расположен внутри невыпуклого криволинейного треугольника ABC , где AB – меньшая дуга окружности. Докажите, что длина этого отрезка меньше длины отрезка AC .
Прислать комментарий     Решение


Задача 110838

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектрисы AM и BK пересекаются в точке O. Площади треугольников BOM и COM соответственно равны 25 и 30. Найдите площадь треугольника ABC и проекцию отрезка OM на прямую BC.

Прислать комментарий     Решение

Задача 110839

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектрисы AM и BK пересекаются в точке O. Площадь треугольника COK равна 3, угол BCA равен  arccos 5/13.  Найдите площадь треугольника COM и проекцию отрезка AM на прямую BC.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 312]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .