ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 91]      



Задача 55458

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов выпуклого четырёхугольника образуют вписанный четырёхугольник.

Прислать комментарий     Решение

Задача 55700

Темы:   [ ГМТ - прямая или отрезок ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, расположенных внутри данного угла, сумма расстояний от которых до сторон этого угла равна данной величине a.

Прислать комментарий     Решение

Задача 57000

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Прислать комментарий     Решение

Задача 65444

Темы:   [ Наглядная геометрия ]
[ Биссектриса угла ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

У листа бумаги только один ровный край. Лист согнули, потом разогнули обратно. A – общая точка ровного края и линии сгиба. Постройте перпендикуляр к этой линии в точке A. Сделайте это без помощи чертёжных инструментов, а лишь перегибая бумагу.

Прислать комментарий     Решение

Задача 65998

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Теорема синусов ]
Сложность: 3+
Классы: 10,11

В остроугольном треугольнике АBC через центр I вписанной окружности и вершину А провели прямую, пересекающую описанную окружность в точке P. Найдите IP, если  ∠А = α,  а радиус описанной окружности равен R.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .