Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 91]
На сторонах AC и BC треугольника ABC взяты соответственно точки M и N, причём MN || AB и MN = AM.
Найдите угол BAN, если ∠B = 45° и ∠C = 60°.
В трапеции ABCD (AD – большее основание) диагональ AC перпендикулярна стороне CD и делит угол BAD пополам. Известно, что ∠CDA = 60°, а периметр трапеции равен 2. Найдите AD.
Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.
Биссектрисы углов при одном основании трапеции пересекаются на другом её основании. Докажите, что второе основание равно сумме боковых сторон.
AB и CD – параллельные прямые, AC – секущая (точки B и D находятся по одну сторону от прямой AC), E и F – точки пересечения прямых AB и CD с биссектрисами углов C и A. Известно, что AF = 96, CE = 110. Найдите AC.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 91]