ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 91]      



Задача 53556

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Докажите, что биссектрисы углов при боковой стороне трапеции пересекаются на средней линии.

Прислать комментарий     Решение

Задача 53646

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Периметр треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Биссектрисы треугольника ABC пересекаются в точке O. Через точку O проходят две прямые, которые параллельны прямым AB и AC и пересекаются с BC в точках D и E. Докажите, что периметр треугольника OED равен отрезку BC.

Прислать комментарий     Решение

Задача 53904

Темы:   [ Построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На одной из сторон данного острого угла лежит точка A. Постройте на этой же стороне угла точку, равноудаленную от второй стороны угла и от точки A.

Прислать комментарий     Решение

Задача 54026

Темы:   [ Неравенство треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

BK – биссектриса равнобедренного треугольника ABC  (AB = AC).  Докажите, что  BK < 2CK.

Прислать комментарий     Решение

Задача 54726

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, в котором  ∠A = α,  ∠B = β.  На стороне AB взята точка D, а на стороне AC – точка M, причём CD – биссектриса треугольника ABC,
DM || BC  и  AM = a.  Найдите CM.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .