Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 91]
Одним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон.
Дана прямая l и точки A и B по одну сторону от нее. Найдите на прямой l такую точку M, чтобы луч MA был биссектрисой угла между лучом MB и одним из лучей с вершиной M, принадлежащих данной прямой l.
|
|
Сложность: 4 Классы: 8,9,10
|
Дана прямая MN и две точки A и B по одну сторону от нее. Постройте на прямой MN точку X так, что ∠AXM = 2∠BXN.
|
|
Сложность: 4+ Классы: 9,10,11
|
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны
этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 8,9,10
|
В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке
B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 91]