ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 91]      



Задача 55015

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Трапеции (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площади треугольников ABE и CDE равны между собой, диагональ AC является биссектрисой угла A,  AB = 4.  Найдите BC.

Прислать комментарий     Решение

Задача 55164

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

Прислать комментарий     Решение

Задача 55407

Темы:   [ Касающиеся окружности ]
[ Описанные четырехугольники ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырёхугольник ABCD описанный тогда и только тогда, когда окружности касаются.

Прислать комментарий     Решение

Задача 66329

Темы:   [ Касающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Панов М.Ю.

В треугольнике $ABC$ провели биссектрису $CL$. Серединный перпендикуляр к стороне $AC$ пересекает отрезок $CL$ в точке $K$.
Докажите, что описанные окружности треугольников $ABC$ и $AKL$ касаются.

Прислать комментарий     Решение

Задача 107985

Темы:   [ Разные задачи на разрезания ]
[ Инварианты ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 7,8,9

Бумажный треугольник с углами 20°, 20°, 140° разрезается по одной из своих биссектрис на два треугольника, один из которых также разрезается по биссектрисе, и так далее. Может ли после нескольких разрезов получиться треугольник, подобный исходному?

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 91]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .