ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A, B и C лежат на одной прямой, причём B находится между A и C. |
Страница: 1 [Всего задач: 3]
Каждая из шести окружностей касается четырех
из оставшихся пяти (рис.). Докажите, что для любой
пары несоприкасающихся окружностей (из этих шести) их
радиусы и расстояние между центрами связаны соотношением
d2 = r12 + r22±6r1r2 (к плюск — если окружности не
лежат одна внутри другой, к минуск — в противном случае).
На высотах AA0, BB0, CC0 остроугольного неравностороннего треугольника ABC отметили соответственно точки A1,B1,C1 так, что AA1=BB1=CC1=R, где R – радиус описанной окружности треугольника ABC. Докажите, что центр описанной окружности треугольника A1B1C1 совпадает с центром вписанной окружности треугольника ABC.
Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке